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Meet the Expectations!
® Baby Girl iPad Magazine Confusion - YouTube [360p].mp4
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Dum systems no more tolerated!

® In the next 10 to 20 years

° A ‘dum’ system will be considered dangerous
A car without pedestrian detection will no more be tolerated!

The same for obstacle detection with automatic breaking

® So, no more:
dum vehicle!
Dum design tool!
Dum component!

Dum compiler!




Intelligent Transportation Systems

The bigger picture!
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Outline

® What do we mean by ‘cognitive behavior’ in ITS?

° Recognition of Driving situation
® Environment perception

® Sensors, data fusion, dealing with uncertainty, etc.

e ‘Overcome uncertainty’ or ‘Live with uncertainty’

e Distributed uncertainty management

® Redundancy; multi/many core opportunity




Cognitive car?

e p» BMW Automatic Driving - YouTube [720p].mp4
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Lack of tools

* No programming framework today provides functional blocs
for:

® Pedestrian detection

e Or even

® Pedestrian modeling for image processing toolbox

e Even if you find it

® No easy way to integrate it in an embedded vehicle architecture

° Probably not complying to Autosar
® What about much more complex functions

like ‘co onitive functions’?




Cognitive functions
o Understanding

® Reasonning
®* Double Checking

o Downgraded operation




EU integrated projects (700 M€)




Driving situation characterization

Veronique Cherfaoui
Heudiasyc Lab — UTC, France
Micheéle Rombaut

University of Joseph Fourier, Grenoble, France

Data fusion for driving situation 15
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Overtaking sequence
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@ Data fusion for driving situation characterization




For a particular application

® What objectives to reach?

® What information to get?

® Front vehicle following: position and speed of the front vehicle
(accuracy: position 20cm, speed 5km/h)

® Overtaking assistance: existence of a rear left vehicle (no vehicle:
100%, a vehicle 90%)

® Characterization of the data:

accuracy, re]iabi]it)/,frequengf, de]a)/

@ DRiiVE : Data reduction and analysis




Definition of accuracy

e Estimation of the difference between the measure m from the

sensor and the real unknown value X to measure

® Ordered and continuous space of definition (2

X m

@ Data fusion for driving situation characterization

X € Q)




Example

The distance between the experimental vehicle and the front

vehicle (target) is 23m more or less 60cm
This means :

The real value X of the distance is in the interval

[22,4m ; 23,6m]

@ Data fusion for driving situation characterization




Accuracy modeled by probabilities

p(x/m): probability that X = x, if the measure is m

Gaussian distribution : mean m, variance o°

@ Data fusion for driving situation characterization




Accuracy modeled by fuzzy sets

7T (x): possibility that X' = x, if the measure is m

The membership tunction g (x)= 7 (x) is defined by an expert

Him(X)

@ Data fusion for driving situation characterization




Accuracy modeled by evidential theory

e The space of discernment is the set 2¢? of the subsets A, ot 0

® m _(A,)is the evidence that X is in 4, if the measure is m

@ Data fusion for driving situation characterization




Accuracy modeled by evidential theory
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@ Data fusion for driving situation characterization




What is the Theory of belief functions?

@ A formal framework for representing and reasoning from
partial (uncertain, imprecise) information. Also known as
Dempster-Shafer theory or Evidence theory.

@ Introduced by Dempster (1968) and Shafer (1976), further
developed by Smets (Transferable Belief Model) in the

1980's and 1990’s.
@ A belief function may be viewed both as
e a generalized set and
@ a non additive measure,

and the theory includes extensions of probabilistic notions
(conditioning, marginalization) and set-theoretic notions
(intersection, union, inclusion, etc.).

@ The theory of belief functions thus generalizes both the
set-membership and probabilistic approaches to uncertai@
reasoning.

Thierry Denceux Theory of belief functions for data analysis and machine learning




Mass functions

Definition

@ Let Q2 be a finite set of possible answers to some guestion:
frame of discernment.

@ A mass function on Q is a function m: 2 — [0, 1] such that

> m(A)=1.

ACQ

@ The subsets A of 2 such that m(A) > 0 are called the focal
elements of m.

@ A mass function mis often used to model a piece of
evidence about a variable X taking values in €. Sute

@ The quantity m(A) can be interpreted as a measure of th@
belief that is committed exactly to the proposition X < A.

. D,
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Mass functions
Special cases

@ Only one focal element:

m(A) =1 forsome A C Q

— categorical mass function (~ set). Special case: A = (2,
vacuous mass function, represents total ignorance.

@ All focal elements are singletons:
m(A) > 0= Al =1

— Bayesian mass function (~ probability mass function).

@ A Dempster-Shafer mass function can thus be seen as

e ageneralized set;
@ a generalized probability distribution.

= UftC




_
@ A murder has been committed. There are three suspects:
(2 = {Peter, John, Mary }.

@ A witness saw the murderer going away, but he is
short-sighted and he only saw that it was a man. We know
that the withess likes Irish pubs and is drunk 20 % of the
time.

@ This piece of evidence can be represented by
m({ Peter, John}) = 0.8,

m(Q) = 0.2

@ The mass 0.2 is not committed to { Mary }, because the
testimony does not accuse Mary at all!




Belief and plausibility functions

Definitions




Belief and plausibility functions

Interpretation and special cases

@ Interpretations:

e bel(A) = degree to which the evidence supports A.

e pl(A) = upper bound on the degree of support that could
be assigned to A if more specific information became
available (> bel(A)).

@ Special cases:

e |f mis Bayesian, bel = pl (probability measure).
e If the focal elements are nested, pl is a possibility measure,
and bel is the dual necessity measure.

o Utc

5
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@ Data fusion for driving situation characterization

» H,
» H,
» H,
» H,

Definition of reliability

e Estimation of the confidence in an hypothesis H

® Discrete and non-ordered space of definition (2

: the target is a car
. the target is a truck
. the target is a motorbike

. the target is a pedestrian




Data processing sequence

1. Temporal data fusion
2. Fusion of redundant data
3.  Fusion of complementary data

4. Symbolic characterisation of the situations

@ DRiiVE : Data reduction and analysis




1- Temporal data fusion

® The experimental vehicle (EV) moves in a static environment
® Other vehicles around the experimental vehicle move too
¢ The information, true at time ¢, becomes false at time ¢t + A ¢

® Need to time stamp the data (different delays and frequencies)

@ DRiiVE : Data reduction and analysis




Data evolution

* Use of the model evolution (a priori knowledges)
v(t+A4t)= yAt+v(t)
x(t+At)=1/2yAt? + (v(t+At)-v (1)) At +x (1)
® Based on the Kalman filter

* Target following algorithrn
® line following

® multi-vehicles following

@ DRiiVE : Data reduction and analysis




2- Fusion of redundant data

® Simultaneous observations of the same object

* Improve the accuracy

¢ Few redondant data because of the lack of sensors

@ DRIiiVE : Data reduction and analysis

camera 1

camera 2




3- Fusion of complementary data

* Same object, different types of data
* Different objects

® Increase the knowledge on environment

YA

camera (Y,Z)

telemeter (X,Z)

@ DRIiiVE : Data reduction and analysis




Fusion of complementary data

@ DRIiiVE : Data reduction and analysis




4- Symbolic characterisation

® Data interpretation
® Definition of the symbolic models

* Use of a priori knowledges

1:-0,75m

2 :+0,80m } EV on the right lane

@ DRIiiVE : Data reduction and analysis




The numeric/symbolic conversion

H(X)

A

,Ulow(m) \
low middle high
Lmiddie(M)
>
m X

@ Data fusion for driving situation characterization




Maneuver recognition

o Temporal sequence of situations

© Example of maneuver: the overtaking

@ DRiiVE : Data reduction and analysis
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@ DRiiVE : Data reduction and analysis
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@ DRiiVE : Data reduction and analysis /
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State : lane change
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State : overtake
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@ DRiiVE : Data reduction and analysis
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@ DRiiVE : Data reduction and analysis
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State : move away
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@ DRiiVE : Data reduction and analysis
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High-level interpretations of
driving situations

Conclusions drawn from

previous work

Become Intermediate Data for

the next step

Sophie LORIETTE-ROUGEGREZ
Jean-Marc NIGRO
Université de technologie de Troyes
Laboratoire LM2S

TROYES — France




Raw data and intermediate data

Time X Y S Teta | Acc Phi Rg Rd
0.01 | -32.00 0 15 0 0 0 -3.50 1.50
0.02 | -31.85 0 15 0 0 0 -3.50 1.50
0.03 | -31.70 0 15 0 0 0 -3.50 1.50 TV
1.12 | -15.52 | -2.01 | 15 | -9.91 0 3 -1.46 3.54
1.13 | -15.37 | -2.04 | 15 | -9.68 0 3 -1.44 3.56
1.14 | -15.22 | -2.06 | 15 | -9.46 0 3 -1.41 3.59
Rd

Data obtained from the experimental vehicle

Time | Clock ('s)

Acc | Acceleration of EV relative to TV (meters?/second)

Phi | Front wheel angle of EV (in degrees)

Rd | Position of EV against the right road side (meters)

Rg | Position of EV against the left road side (meters)

Teta | Angle of the target TV ( degrees)

S |Speed of EV relative to TV (meters/second)

X [Position on the x's axis of TV against EV (meters) 1 x

Y | Position on the y's axis of TV against EV (meters)

Data’'s meaning




4 . . N
Overtaking maneuver recognition

graph
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4 . . . ™
Modeling overtaking maneuver with a

Petri net

PN = <P, T,R,M>

P: the set of places M:the markjng vector
T: the set of transitions R: the vector of receptivity
P, P, Ps
t, t, t, Py 1, Ps
| | | |
Initial state I I Overtaking I I Final state
| | | |
'™ 7 L eft lane ch - - t == =' Rioht lane change 1
: Left lane change : ight lane change :
| | | A\ 4
\4
LS>0 LS small " ¢ LS<0 LS small
SWA >0 LA small SWA<O0 LA small
or >0 or >0

LS:Lateral Speed, LA:Longitudinal Acceleration, SWA:Steering Wheels Angle
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ef Petri net

PN = <PT,R,M>

=P,
C 2" = {{pl}’{pz}’{pB}’{pl’ pz}’{pp pB}’{pZ’ p3}’{p1’ P2 pB}}

Y
——1 )

The new marking function

m*:2% - [0,1]

> mi(A)=

AcP




First step
*The transitions are sure ||~ R k [O 1 O]T
* The initial state, at time k, mk ({ P, pz}) 0.6, m ({ P, Ps }) 0.3,
L m*({py, Py pa}) =0
= t,
t L >P2 {pp pz} * o) ){pl’ pS}

—, 1, {pz’ ps} RE{00] ){ps}

—@ AP P a2, )
B




Uncertain knowledge of transitions

The frame of discernment: Q — {O
k

tl Is false — Rikl - m
t| Is true — Rik,z — m_k

The vector of receptivity: R kK _ [R R k2 le3 ]
, |

i=1...q
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M ({p,, p, }/{p.)

m; ({0j)=0

m (10 }) 0.1

S mA(A)= 3 m (AL Jm*(B)




Increasing complexity and tools

e increasing cognition < 10 X increasing complexity
e increasing complexity «< 10 X code size
e .~ increasing cognition «< 10 X 10 X code size

® [ack of tools!

* Currently, no programming tool provides uncertainty
management
® Fuzzy logic and Interval programming tools are

insufficient




Programming with uncertainty
management

* Example : Speed regulator

Usual programming Programming with
uncertainty management

IF (DISTANCE > 30) THEN IF (bel(distance,30)>80%) AND
pl(distance,30) < 20%) OR (.....
AND....) OR (... AND....) OR
(....AND ...)
THEN

* It would better be integrated in a meta language, with
automatic source code generation, all included in a single
framework




Applications complexity versus tools

e

— Applications complexity

\ - — Mathematical support

—Programming Frameworks

2000 2005 2010 2015




Dempster combination laws

Belief functions: canonical decompositions and combination rules. Fredéric Pichon, PhD. Thesis,

March 2009

Combine veracities from different sources for the same hypothesis

Conjunctive sum

mg(A)= Z 111':;1 (A,)- mz? (Bj)

Al |"_\|Bj=.t'!'.|.

Disjunctive sum

mg (A) = me; (A,)-my (B))

Al '\_.-'Bj =A




Critical systems Engineering and
Uncertainty

Overcome uncertainty as used to do?




Overcome uncertainty
® Objective of Engineering today is to OVERCOME

uncertainty

e What about ‘taking into account uncertainty’

® Serious change in system design and programming paradigm

® Do we really have the choice?




e

N

Uncertainty: do we really have the
choice?

s a7




Embedded critical systems
* Astrium (EADS group) example

L Interesting concepts
® But how may | plug this stuff in the docking procedure of my
spacecraft to the International Space Station (ISS)?

Centimetric, millisecond precision!

® What are we comparing exactly?
Nominal operation
* System behaves as modeled
or exceptional operation
» System behavior # model

Which approach is more resilient?




Redundancy and uncertainty

aradigm (example geolocation
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Multi track Paradigm & Framework

® Multi-track approach

E -
o -
o -
Programmer
writes all
alternative

tracks code

Selection

Prograrnrner

writes selection

function code




Multi track Paradigm & Framework

® Multi-track approach

*
4

-

Compiler

* ¢
L 2

Selection

Programmer
writes one
instruction

stream




Lack of tools, once more!

® No programming frameworks providing:
® Programming just the track skeleton
* Automatic generation of multi-track instances
® Gathering all results
® Comparing and deciding

® Quite a challenge to develop this framework!
® How would a component look like in this case?
® What would be the input?
® Etc.




Functional approach: a major Key...

* To capture Need

® (functional analysis, non-functional constraints allocation)

e To design Solution

® (tunctions allocation to components)

® 'To ensure consistency between Need & Solution

® (unique, consistent functional dataflow allocated)
F21
. Iy

,r--\ l_’/_x
‘F6 F3)

l_,/" L g




How to validate Need understanding

® Operational Analysis

® (actors, tasks, roles, missions & goals)
o Including capture of non-functional constraints

* Functions traceability & justification Vs Requirements and

operational analysis




How to validate Solution /1

® Perform a multi—viewpoint trade-off Analy51s

° safety & perf & interface & prod%ct line & Weight & cost &...

X

ViewPoints §

Solution
Architecture —




How to validate Solution /2

e (Confront Components Architecture Vs Requirements and Need analysis

® Operational, Functional, non-Functional

ViewPoints




/

Summary: Steps
& Models

Operational Analysis
Functional /NF Analysis

Logical Architecture
Viewpoints trade-off

o | == |f
HBEEHEHE

ViewPoints




Redundancy and multi/many core
Processors

Towards automatic redundancy?




Smart Redundancy over multi/many
core

-

Compiler

Programmer
writes one
instruction

stream




Automatic Redundancy Framework

® Improving execution reh'abilit)/ (yf pamllel apph'cations on multi-core

architectures,O. Tahan, PhD. Thesis, December 2012

% of Injected Faults
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Redundancy Framework,
Slowdown!

Slowdown of FT benchmarks over parallel not FT benchmarks

3,5

M Fibonacci
B Floorplan
B Nqueens
1 W SparselLU_Single
W FFT

M Health

I Strassen

O Sort

Slowdown

1,5

Number of Threads

Benchmarks slowdowns vary between 2.53X and 3.22x on 16 cores

N Y




Redundancy Framework
but overall speedup wrt mono-core

Slowdown

4
Slowdown of FT benchmarks over serial execution without FT
5 |
- B Fibonacci
- _ | .q_* | l | _ - EFloorplan
B Ngueens
W SparselU_5Single
= 7 mFFT

B Health
023 W Strassen

B Sort
0,125
1 2 3 4 8 16

Number of Threads




Speed-up using ‘smart redundancy’

% Execution Time Speedup

v~ Co

(o5 R T " R ¥ T ¥y

Speedup using our task based redundancy over TriThread

Floorplan
Floorplan
-
Fibonacci
€ Max. speedu

‘Health P P
SparselLU
Health

3 4 8 16

Number of Active Cores




Tools for automatic redundancy

® From the fault tree analysis
° Automatically generate diagnosis models

® Check if architecture (hardware/software) are satistying

diagnosis model

o Automatically generate redundant software code




Conclusion

¢ . ) ¢ . )
Overcome uncertalnty Or manage uncertalnty

Exact reasonning/ programming

® Versus

Approximate reasonning/ « programming? »
Automatic redundancy generation

o Many COre processors opportunity

Lack of tools
® In all your research works,
® Please:

e Think Algorithm but prototype a tool!




